包工头欠薪后失联被刑事拘留 广东湛江公安为农民工追回劳动报酬73万余元******
本报记者 邓 君
本报通讯员 尹雁宏 李晓丹
广东湛江某建筑公司欠薪73万余元,包工头却以生病为由,跟警方玩起了“捉迷藏”,拒绝接受调查。近日,广东省湛江市公安局霞山分局严厉打击恶意欠薪违法犯罪行为,办理了这起拒不支付劳动报酬案,刑拘1名犯罪嫌疑人,为30名工人追回劳动报酬。
2022年12月14日,湛江市公安局霞山分局建设派出所接到区人力资源和社会保障局移交的一宗拒不支付劳动报酬案件。
据人社局反映,该案所涉及的项目总包公司是广东万某建筑工程有限公司(以下简称万某公司),基坑支护专业分包单位是某经建筑工程(湛江)有限公司(以下简称某经公司),某经公司法人代表为徐某诚,某经公司派驻该项目负责人(包工头)为何某令。
2022年9月7日,该项目工人王某文等30名工人向人社局反映在该项目被某经公司拖欠工资共计73.2万余元,人社局于当月13日立案查处,并分别找到徐某诚和何某令询问调查督促支付拖欠的工人工资。
直到当年11月5日,人社局劳动保障监察综合执法大队从王某文等3名工人代表处了解到,30名工人被拖欠的工资仍未支付。随后,人社局先后于2022年11月7日和2022年11月17日两次向某经公司发出《劳动保障监察限期改正指令书》,要求某经公司限期支付王某文等人被拖欠的工资。然而,某经公司未能在规定期限内结清王某文等人被拖欠的工资。
2022年12月14日,霞山警方接收该案件后,由建设派出所主办该案。次日,侦查民警立刻召集王某文等3名工人代表了解情况,经询问得知,工人工资均由何某令约定并支付,所有工人均未签订劳动合同。工程结束后,工人曾向某经公司、何某令、万某公司及开发商多次讨薪,但只有个别工人领取到部分工资,大部分工人一分钱都没领到。工人多次讨薪后,何某令竟直接失联不接电话。
由于工人均来自农村,更有多人是家庭唯一劳动力,欠薪数额较大且时间较长,现年关将至,工人急需领取报酬回家过年,因此情绪非常激动。侦查民警在现场向工人代表表明态度,承诺会在最短的时间内竭尽全力帮助追回欠薪并将涉案人员绳之以法,同时嘱咐工人代表积极安抚好其他工人的情绪。
随后,侦查人员对万某公司派驻在该项目现场办公室成员何某鑫进行了询问调查。据何某鑫所述,万某公司都是按时支付某经公司该项目工程进度款,从无拖欠,截至2022年6月27日,万某公司直接支付某经公司该项目工程进度款595万余元,并代付该项目21名工人工资共计37万元。
2022年12月17日,霞山警方前往多地大力搜集旁证,证实何某令的确欠薪73万余元,遂立刻对其进行口头传唤。然而,何某令称自己核酸阳性,但拒绝提供健康码,漠视侦查人员的传唤,拒接民警电话。
2022年12月22日,霞山警方对该案立案侦查。直到民警将传唤证图片和其触犯的法条及可能引发的严重后果通过短信送达何某令,要求何某令限期内到公安机关配合调查,否则将对其采取追逃和抓捕措施,何某令才意识到事情严重性,于2022年12月28日到案。同日,何某令被依法刑事拘留。
经审讯,2021年7月何某令从开发商处拿到该项目基坑支护工程,因没有足够资金,找到何某京投资该工程,何某京又联系某经公司挂靠承包该工程,该工程总造价844万余元,截至2022年6月,某经公司已收到万某公司支付的工程进度款600余万元,但其以万某公司未结清工程款为由一直拒不支付拖欠的30名工人工资73万余元。
民警对何某令进行普法教育,告知应立即筹集资金支付拖欠的工人工资争取宽大处理。同时,民警又与开发商、万某公司相关人员取得联系,希望在追讨30名工人被拖欠的工资事项上取得对方支持。
终于,2022年12月29日,侦查人员召集工人代表与何某令在人社局相关负责人、万某公司相关人员及建设派出所负责人共同见证下,在派出所会议室对某经公司因该项目拖欠的工人工资明细进行最后核对确认,当日22时许,30名工人被拖欠的73万余元工资全部支付结清。
在处理欠薪案件过程中,霞山公安分局以“春风利剑2023”专项行动为契机,积极主动与区人力资源和社会保障局形成联动机制,组建清欠专班,动态关注欠薪线索及清欠工作开展情况,定期召开案件研讨会,分析总结案件办理经验教训,提升执法队伍执法能力。同时,不断总结典型案例,对外进行宣传教育,增加了被欠薪务工人员的信任感。
诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
(文图:赵筱尘 巫邓炎)